JGP - Vol. 7,n. 2, 1990

The twistor equation on Riemannian manifolds
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Abstract. It is shown that a twistor spinor on a Riemannian manifold defines a
conformal deformation to an Einstein manifold. Twistor spinors on 4-manifolds
are considered. A characterisation of the hyperbolic space is given. Moreover
the solutions of the twistor equation on warped products M" x IR, where M" is
an Einstein manifold, are described.

We study n-dimensional Riemannian spin manifolds (M", g), n > 3, admitting
non-trivial twistor spinors. A twistor spinor is a spinor field ¢ € I'(S) satisfying
the differential equation

1
Viv+—X-Dy=0
n

for all vector fields X.

The present paper is related to investigations by Th. Friedrich ([3]) and A.
Lichnerowicz ([7, 8]).

In the first section we introduce some notations and give a short summary
of previous results. .

In Section 2 we show that a Riemannian spin manifold, which admits a solu-
tion Y of the twistor equation satisfying C 5 + 0 v > 0, is conformally equiva-
lent to an Einstein manifold with positive scalar curvature, where any twistor
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spinor is conformally equivalent to the sum of two real Killing spinors. On the
other hand. for a Riemannian spin manifold M” with a twistor spinor  satisfying
¢, =@, = 0 we obtain that M" \ \" is conformally equivalent to a Ricci-flat
space and Y }M,, v becomes a pdrdllel spinor field. Here ( and Q are real
constants depending on ¢ and \, denotes the zero set of xp We note that the
result for the second case can also be deduced from Proposition 6 in {3]. Similar
results can be found in papers of A. Lichnerowicz concerning twistor spinors
(see [9. 10]).

In Section 3 we study twistor spinors on 4-manifolds and give informations
concerning the dimension of the kernel of the twistor operator &% on connected
and simply connected Riemannian 4-manifolds.

In Section 4 we prove

PROPOSITION. Let (M" g). n = 3, be u complete connected spin manifold. Fur-
thermore, let (M" | g) be an Einstein manifold with non-positive scalar curvature
R < 0. Suppose that  # 0 is a non-parailel twistor spinor on M" such that
the function [ : M" - [0, o) defined by flx) = (Y(x). Y(x)), x €M artains
d FInImun.

Then

(i) If R <0, then (M"_ q) is isometric to the hyperbolic space with sectional
curvature R/(n(n — 1)).

(i) If R = 0, then (M", g) is isometric to the space R' with the standard
metric.

In the last section we describe the solutions of the twistor equation on the
warped product (M x R, f? (tyge dt*) for an Einstein manifold (M. g) and 4
function f : R = (0, o0).

Furthermore, we give examples of warped products admitting twistor spinors
with an arbitrary number of zeros.

The author thanks Th. Friedrich for introducing to the subject and helpful
comments.

1. NOTATIONS AND PREVIOUS RESULTS

Let (M", g) be a n-dimensional Riemannian spin manifold, # 2 3, and let §
be the spinor bundle of (M", g) equipped with the standard hermitian inner
product (). Denote by VS the covariant derivative on the spinor bundle induced
by the Levi-Civita connection V on M" .

A twistor spinor on (M"_ ¢) is a spinor field y € I'(S) solving the differential
equation
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1
VS Y+ —X-DY=0
n

fot all vector fields X € I' (TM™), where D denotes the Dirac operator and X - ¢
expresses the Clifford multiplication of the vector field X by the spinor field
¢. It is well-known that a spinor field Y €T(S). is a twistor spinor if and only
if the expression X - V}g( Yy does not depend on the vector field X, where
| X| =1. A spinor field ¢ € ['(S) satisfying the differential equation

VS ¥ =2X-y

for allX € " (TM"), where A €€, is called Killing spinor. Any Killing spinor
is a twistor spinor.

The twistor equation characterizes the kernel Ker & of the twistor operator
92 . @ is a conformally invariant operator, i.e. if § = Ag is a conformal change
of the metric and ~ :S— S denotes the natural isomorphism of the spin bundles
then ¥ € Ker & if and only if )\1/4$ € Ker 2. In addition to the conformal
invariance of the operator & the existence of non-trivial twistor spinors forces
properties of the conformal structure of the manifold. If we consider the Weyl
tensor W of the Riemannian manifold as a 2-form with values in the bundle
End(S), then we obtain Wy = 0 for any twistor spinor .

On the space Ker £ of all twistor spinors the expression Cw = Re (Dy, ¥
is an invariant of order two and

n
Q =y’ | DY’ —C] — ) (Re&Dy.¢ -y} >0,
Jj=1
where ¢, .. ., e, is an orthonormal frame on M" | is an invariant of order four.

In our paper we will essentially use this fact to study twistor spinors.
Further, if ¢ € Ker £ then

Rn :
(1.1y Dy =——y
4n-1)
and-
(1.2) VS (Dy)= g LX) -y, XETTMM)

where L denotes the (1,1)-tensor defined by
‘R
n—21\2n-1)

L(X) = X —- Ric(X) |, XeTM".
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In the case that the manifold (M". g) is an Einstein manifold we have some
more informations. It is easy to prove that if (M", g) is an Einstein manifold.
then D(Ker ) C Ker 4 .

Moreover, the (1.1)-tensor L is given by L = R/(2n{n 1)) id. Finally
we remark that (X - . Y- ¢) = g(X Y) | v |2 for all vector fields X and } where
( .) denotes the real part of € ).

We refer to |3, 7. 8] for more details.

2. THE CONFORMAL DEFORMATION TO AN EINSTEIN MANIFOLD
DEFINED BY A TWISTOR SPINOR

We start our consideration concerning the conformal structure of Riemannian
spin manifolds. which admit a non-trivial solution of the twistor equation. with

PROPOSITION 2.1. Let (M, g) be a n-dimensional Riemannian spin manifold,
n = 3, with a twistor spinor Y. [y | = 1. Then (M", q) is an Einstein manifold
with non-negative scalar curvature

1)

2
RA“”—(CQ +0,)

Proof. We choose 4 local orthonormal frame ¢....e on M. Since ¥ is a

twistor spinor. we have

1
S oo,
Vc/ Y o= - ¢, Dy
and
s n
ej(l)l//): —: L(C’/’ Y
forj=1.....n.

Consequently
1

(2.1) — e} e w>:<\7§]_(1)w. e, Y=

i

(DY e, b)) (DY e VT )

Because of { ¢ = 1 we have 0 = Xy, y) = X VE“T Vo) =— 2n(X-Dy. )
for X € I'(TA1"). '

Hence
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(2.2) (e, DY, ¥)=0 for j=1,...,n

The real part of equation (2.1) yields

n
i 2 VS y) =
2Li]-|llfl =— Dy, ¢ Vej\ll)
1 1 5
e -Dv. = ¢ Do) =g, —| DY,
n
1eL =—2/n? 9, [Dxlxl2

Equatlon 2.2) u“xphesi /Jxlz[ = (D?y, ), from which | Dnﬁl.2 = Rn/(4(n — 1))
follows.

Thus L =—R/2nn — 1)) s which is equivalent to Ric = R/n g.

Consequently, (M", g) is an Einstein manifold and, applying |D¢/|2 =
=Rn/(4(n — 1))= 0, the scalar curvature R is non-negative. The identity
R = (4 - 1))/n (C; +Q,) is proved in [3]. ; .
PROPOSITION 2.2. Let (

n = 3. Suppose that (M"
curvature R + 0. Then

, g) be a n-dimensional Riemannian spin manifold,
, g) is an Einstein manifold with non-vanishing scalar

(i) If R > 0 then any twistor spinor is the sum of two real Killing spinors.

(it} If R < O then any twistor spinor is the sum of two imaginary Killing spinors.
Le. Ker 2 =K, @K where

B 1 R
r[/eF(S) VS —————X»lp
nn—1)

for all vector fields X}and

’ 1 R
—wer(S)VSw—— — Xy
nn—1)

for all vector fields X.}

Proof. Let Y be a non-trivial twistor spinor on M" . We consider

Rn
— Y+ Dy

and
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Using tormula (1.2), we sec
Wy, = =}— xy
!
and
Y

1
v, == ll=—— vy
- 2 ntin — 1)

[

for all vector ficlds Y.

Hence ¢, and ¢, are real Killing spinors, if R > 0 and imaginary Killing
spinors. if K < 0. M

On the other hand, we have

noo 1

= (W - ‘l/w) | ]
Rn ]

LEMMA 2.3, Let (M", g) be a n-dimensional Riemannian spin munifold, n = 3.
with a twistor spinor y. | (=1L If (M". g) is a Ricci-flut space, ie. an Einstein
manifold with vanishing scalar curvature R = 0, then  is a parallel spinor field.

Proof. As in the proof of Proposition 2.1 we have | Dy 13 = Ru(dn - 1)).
Since R = 0. this implies Dy = 0.

We conclude V¢ = — 1/n X - Dy = O for all X € D(TM").

Consequently,  is a parallel spinor field. L

In the following we denote by A\'v, the zero set of the spinor .

COROLLARY 2.4, Let (M". ) be a n-dimensional Riemannian spin manifold,
n < 3, with a non-trivial twistor spinor  and set g= 1/|y [4 qg.
Then (M” \A\'\; . §) is an Einstein manifold with non-negative scalar curvature
_ 4n 1) N
R= ——— ((; + Q\) ).
n
If ('i + Q\;' > 0, then A\'v = 0 and Ker & transformas into Ker 9 where
Ker & = IQ KoL If (z + Qw = Q. then 1/[ \J/] LZ is a parallel spinor field
on (M”? \.\"v .g).

Proof. The Riemannian metric ¢ = 1/] v ]4 g has constant and non-negative

scalar curvature
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_ 4n-1
R= —— (Ci + Qw) (see Theorem 1 in [3]).
n

Furthermore, 1/ | ¥ | y is a unit twistor spinor with respect to the metric g.
The relation N\p = ¢ for C i + Q v > 0 is obviously. Now the assertion follows
from Proposition 2.1, 2.2 and Lemma 2.3.

3. TWISTOR SPINORS ON 4-MANIFOLDS

Let (M4, g) be a 4-dimensional oriented Riemannian spin manifold. Because
M* is even-dimensional, the spinor bundle S splits into two orthogonal subbundles
S = ST @ S corresponding to the irreducible components of the Spin (4)-
representation. Denote by ¢ = ¢ + ¥~ the induced decomposition of a spinor
field ¢ € I'(S). Let W be the Weyl tensor of the Riemannian manifold M4, which
we will consider as a 2-form with values in the bundle End(S) (see [3]). Denote
by W, and W _ the components of W corresponding to the decomposition
S=SteS5".

Now suppose that ¢ = ¢* + ¢~ is a twistor spinor. Then ¢* and ¢~ are
twistor spinors too. Furthermore, recall that Wy = 0. Thus, ¢~ = 0 implies
W _ =0, and analogously y* = 0 forces W . = 0. Especially, if we have twistor
spinors in I'(S*) as well as in I'(S™), then the Riemannian manifold (M", g)
is locally conformally flat.

Furthermore, we know that the complex dimension of Ker & for a connec-
ted and simply connected Riemannian spin manifold (M*, g) with W = 0 is 8.
Moreover, dimGKer % < 8 holds on a connected Riemannian 4-manifold (see
[3]). In this section we will derive further informations concerning the dimen-
sion of Ker & on connected and simply connected Riemannian 4-manifolds.

PROPOSITION 3.1. If (M4, g) is a 4-dimensional connected and simply connected
Riemannian spin manifold, then the following conditions are equivalent,

(i) dimg Ker D >3

(it) dim ; Ker P =38

(iii)W = 0.

Proof: 1t is sufficient to show that dimg Ker 2 =3 implies W = 0. Let Vi
¥,. ¥, be three linearly independent twistor spinors. Without loss of generality
we assume that x]/l, xj/z, 1113 € T'(S7). Hence W_ = 0. On the dense subset M* =
= M* \N, of M* we consider the metric § = 1/ ¢ |4 g. Then (M4,§) is Ricci-
flat and ‘Elx =1/ Vv, | \Zl is a parallel spinor. Thus 5@1 = 0, where D denotes
the Dirac operator of the Riemannian spin manifold (M*, g). Furthermore,
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¢ =1 v @2 and ¢, = 1/| ¢, | @3 are twistor spinors on M* and PP,
#, € IS ) are lincarly independent. Since (M*.G) is Ricci-flat, [—)gﬁ2 and Dg,
ar¢ parallel spinor fields.

Suppose /_)gZ2 = 13@3 = 0. Then € ¥,. ¢y are three lincarly independent
parallel spinors in I'(S ). This is a contradiction to the fact that we have at
most two linearly independent parallel spinors in I'(S ) on the connected 4-
dimensional Riemannian spin manifold (M*, g). Therefore. we can assume that
1353 # 0. Because (M*. g) is an Einstein manifold D‘Z: € T(SY) is a twis or
spinor too. Thus l’?’* = 0. By the conformal invariance of the Weyl tensor we
obtain W = 0 on a dense subset of M* . Hence the Weyl tensor vanishes on MY m

PROPOSITION 3.2 [f (M4, g) is a 4-dimensional connected and simmply connected
Riemannian spin manifold, then the following conditions are equivalent,

(i) 1 <dimg Ker @ <2

(ii) dimg Ker & =2

If one of these conditions holds and W =0 (W+ = 0). then we have W . Z0
W 2z0.

Proof: Let ¢ Z 0 be a twistor spinor on M* and W £ 0. Without loss of gene-
rality we may assume that ¢ € I'(S7 ). This implies W # 0 and hence W, =0.
On MY = M* N_ we again consider the metric § = 1/ |y ]4 g. Then
¢ =1/ [ v [ t[7 {s a parallel spinor and the curvature tensor of the Riemannian
manifold (M?, §) has the form (see [4])

Considering the curvature tensor A as a 3-form with values in End(g), the
curvature tensor # of the covariant derivative V° on S is given by

4 S@: ,;\p fonpel‘(§).

1
4
Thus we have 4 5 |s- = 0. Hence there is a parallel spinor field ¢, € S
with | ¢ ][ =1 and (g, ¢, ) = 0. It is easy to check than ¥, €T(57), defined by
v, x) =] Y(x)| oy (x) forx €M* and
v, (x)=0 forx €N,

is a second twistor spinor on M* -
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Examples

We have dimg Ker % = 8 for conformally flat 4-dimensional Riemannian
spin manifolds (e.g. the Euclidean space IR* and the hyperbolic space H*).
There are two parallel spinors in I'(S*) for K3-surfaces. Hence, dimaKer 9 =
= 2 holds for a 4-manifold which is conformally equivalent to a K3-surface.

REMARK In addition to the Weyl tensor we have the conformally invariant
Bach tensor on a 4-dimensional oriented Riemannian manifold. A lengthy com-
putation shows that the Bach tensor on a 4-dimensional Riemannian spin mani-
fold with non-trivial twistor spinors vanishes identically.

4. COMPLETE CONNECTED EINSTEIN MANIFOLDS
WITH NON-POSITIVE SCALAR CURVATURE
ADMITTING TWISTOR SPINORS

In this section we will prove

PROPOSITION 4. Let (M", g), n > 3, be a complete connected spin manifold.
Furthermore, let (M", g) be an Einstein manifold with non-positive scalar cur-
vature R < 0. Suppose that  is a non-parallel twistor spinor on M" such
that the function f ;M" — [0, o) defined by “f(x) = (Y(x), ¥(x)),x EM", attains
a minimum. Then

(i) If R <0, then (M", g) is isometric to the hyperbolic space with sectional
curvature R/(n(n — 1)).

(ii) If R = 0, then (M", q) is isometric to the space R" with the standard
metric.

Proof: First we consider the critical points of the function f. Clearly, x € M"
is a critical point of fif and only if X(f) = 2/n (DY, X - y) = 0 forall X € T _M".
The Hessian of f at a critical point x € M" is given by

2 R
Hess _f(X, Y) =[—2 |DY|? — —— | wlz] g(x, v,
e 2n(n - 1) X, YET M
, M
It is known (see [3]) that if Y # O is a twistor spinor on M" | then ¢ and Dy
do not vanish simultaneously. Thus, R < 0 implies that Hessxf is positive de-

finite.

Now suppose that R = 0. By means of Vi (DY) =n/2 L(X) - ¢ = 0 we obtain
that Dy is a parallel spinor field. Hence | Dy |2 is constant. Because ¢ is non-
parallel, | DY [2 > 0 holds, which yields that Hess f is positive definite also in
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the vase W 0. I'his shows that each critical point of f is non-degenerate and
Hoval minimumeof’ /L In the following we will see that fhas at most one critical
points Assime that x and v, are critical points of fand let ¢ = d(x . x,) be
the geodesic distance of v

o {00 L from

' and N, . Now we consider a minimal geodesic (7).
| tow,. For the functions u(r) = fiy()) = RVIETe8) ’1 and

Lr - DYy - along the geodesic ¥ we deduce

2 R
= -— v i
"n- 2nin -
(4.1}
_ R _
v e
400 - 1)

Since v, and Y, are critical points of /. we have (0) = w(di = 0. From the
equations (+.1) we derive w =—R/tmn 1)u+ A, where 15#0 is a real
constant. In the case K < 0O the conditions #(0) = wd) = 0 force d = 0, ic.
X oE N,

For R = 0 we derive v = 0(0) and w(£) = v(0)/n" "+ B+

The condition @0y = 0 yields B = 0. Since ¢ is a non-parallel spinor field.
we have v(01 = 0. Thus, from u(d) = 0 we obtain ¢ = 0. Hence x| = x,.

By the assumption / attains its minimum.

Let v, © M" be the unique critical point of /. For x € M" denote by y(1),
r €10, dix . )] a minimal geodesic from v, to x. Integrating the cquations
(+4.1) along y one obtains

dn 1)

Sy = [j'(.\'oi - LDy )] IJ sinh”

(

1 ]/ R )
— ) d(x, X)| + fix,),
2 nin 1 0l v

Rn
DY) T =1 | DY)t ———— fix,)| cosh?
: j [I 0" dn - 1) 0

(1 R Rn ‘
(— - d(x().v\')) 4+ fl¥,),
2 nx 1) Hn o 1)

for R <0, and

H

| Dty )]*
Jlx) = —

dix,,. X)7 + flx,).

5

-

| DY [T =] Dy(x )| >0, for R = 0.
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Therefore, the exponential map exp, Txo M" = R" - M" is a diffeomor-
phism and the geodesic spheres S” ! (x,. 1) around x, with radius r > 0 are the
level surfaces of f, which are (n — 1)-dimensional submanifolds of M" .

Now we are going to calculate the pull back § = exp} (9) of the metric g.

We denote by ¢ the vector field defined by

grad f(x)
X)= ———— | X #X,.
n grad f(x) |

We compute

2 R
V, (grad u) = [— v —— u]X
n? 2nn — 1)

for any vector field X and conclude
2 R
— V- —— u
n? 2n(n — 1)

V. E= X .
x€ T {X - g(X, bt}

This implies
4.2) V, =0
Recalling that
n
Co +Q, =¥’ |Dy]? - Z} Dy, e, y)?
=

is a constant and using that X is a critical point of f, one obtains Ci + Qw =
=u(x,) v(xO).
Since

4
|]gradu”2 =? (uv-Ci — Q)
we arrive at

. 4
| grad u ”2 = ;5 (uv — u(xo) v(xo)).

For R < 0 a simple calculation shows

9]
&

- v(x) - —— u(x) =
n 2n(n — 1)
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( 2 R ( R
= — U(v. ) - — u(Q st — dx ., x)]|
ol 0 2n(n - 1) I(YO) cost nn —1) (\0 X))

R R
4.3) VYE = —————— coth _ d(.\'o..\')) X
’ nn —1) n(n 1)

holds for all vectors X € T _M" x % x, orthogonal to £(x). In the case R - v
a similar calculation shows

consequently,

1
(4.4) Veb) = ——— X
’ d(xo, X)
for all vectors X &€ TXM”_ X ixo, orthogonal to £(x).
We denote by 7,(.\') the integral curves of ¢ satisfying the condition Yo (x) =x
Let ¥ : 5" '(x,. 1) x (0, 00) >M"\ x_ be the diffeomorphism given by

0" 0
Yix, 1)=v, , (x). Using the formula (4.2), (4.3) and (4.4), we compute
: R )
sinh~ — !
nn - 1) ,
v H(g) = = Glgn 1y, 1) A IFR <O,
sinh? (l/ ——)
n(no 1)
and

VHG) =12 gn- 1y, ) P d7, it R=0.

Applying the same arguments as in the proof of Theorem 2 in [2], one ob-
tains that (M", g) is isometric to (IR®, §), where ¢ is given in polar coordinates

by
~ nn—1) ) - R R
g=-———— sinh" | |/———— ] ggn -1 D ds",
R nn —1)
if R <0, and
g=r'gen 19dt? if R =0.
Here ggn - 1 denotes the standard metric of the unite sphere $"~ I L]

5. THE TWISTOR EQUATION ON WARPED PRODUCTS

Let (M*", g), n > 2, be an Einstein manifold with scalar curvature R # 0.
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Then the spinor bundle S of M?" splits into two orthogonal subbundles
S =S8* ® S . Denote by Ker @ = (Ker 2 )* o (Ker % )~ the induced decompo-
sit'ion’ of Ker 2 . Since (M*", g) is an Einstein manifold, we have

D((Ker 2 )= (Ker 2)".
Let {\p;f}be a basis of (Ker 2)* and {y;} abasis of (Ker 2 )~ . Thus

DS )=) Dj ¥; and DW)=Y D, ¥}
k e

Now fix a function f : R! -(0, ) and consider the Riemannian manifold
M*" x R f(t)zg @ dr’). The metric f(t)zg & dr? is conformally equivalent to
the metric ¢ @ (f~ Ydr)? . We recall that y is a twistor spinor on M?" x R with
respect to the metric g ® (f~ Ydn? if and only if \/7 Y is a twistor spinor with
respect to the metric f(£)> g @ df”. N

We first consider the metric g ® (f~ 'dr)? on M?*" x R.

Then £(3/3¢) is a normal unit vector field on M2" .

Identifying M?" x{t}=M?" for t€R, we choose the spin structure of
M?" x R so that

s

SIMznx{t}ESZSJr S ,teR

for the spinor bundle S of M1 IR, where f(0/0¢) acts on S by

p a3 9
—| =i~ 1" and f —| =—i(—1)
of |g. or |-
(see [2]).
Let ¢ € I'(S) be a twistor spinor on (M*" x R, g ® (f~'dt)*). One easily
shows that Y |, 2n, h is a twistor spinor on (Mz", g) for arbitrary t € R. Hence,
¥ has the form

Ve =) CHO Y+ CoD bl)
j ' k
with functions C;.r, C, R~

LEMMA 5.1. The functions C;’ . C, are given by

. — (- 1" .
Cl= ——— C,. D
ey G
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i . 1 i1
¢ Uy CiD*
JIk

ko nf L]'

Proof: From

v :Z..C/'+ f++ Z ¢y wk
z

]

we obtain
S _\ AY e, S
¢, VS u=Y ¢ VS yr+) Cre Vg
7 k
and
o, I
f; 'vf(a/ax) v=r 5 V(a/ar) V=
=i(— 1) f;Z_ C;*w].t}_ Co Vi f
j k
where e . . . .. ¢,, is a local orthonormal frame of M Since \l/; and ¥,

are twistor spinors on M2" | we have

~H n

1 1 .
, .98 +_ _ +
e, VS yl= — DY) = - 57 D, ¥
and
s 1 - 1 -
T N
Hence we arrive at

G vefw-QII)k]- JTIR TR 7 ol /1

The twistor equation for ¢ implies

0
. S 2 S -
cl_~Ve[¢/_f = v(a/auw‘ i=1,.... 2n.

Now the desired differential equations follow. L]
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Now assume that §/ = D(w;). Then D;Tk = §;; - Futher, by means of

X Rn
DY = —————
o -
we have
Rn

D= — 5.
K™ san-1) M

Consequently, the differential equations of Lemma 5.1 become

) —i(— D"R
(5.1 Ct = ——— C;
! 42n - 1)f !
. i(— 1)
(5.2) C = b +
] 2nf ]

Differentiating equation (5.1) and using equation (5.2), we obtain

. R r
Che oLt
T 8n@2n—- v T of

We remark that the differential equation

. noof

h=c¢ F ——h
for a function # on R with c € R, ¢ #0, andf : R — (0, ) has the fundamental
solutions

" d
hl(t)=sin(\/-c ——T—-)
f(r)

"odr
h,(t) = cos (v—c — for ¢ <0,
- ()
"dr
and hy (1) = sinh( Ve )
f(r)
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l,.[

d7
It {1) = cosh (\/: ’ _) for ¢ >0
- HT)

Altogether we proved

PROPOSITION 5.2, Ler (M-, g), n = 2, be an Linstein manifold with scalur
curvature R #+ 0 Let 11/*], . y’/:” € (Ker D )t be a basis of (Ker @' Then
all pistor spinors of the Riemannian manifold (M*" x R, f([)3g s ety with
IR = (0, o), are given by

i

viv n =VAan N ta ) 4 bl () 0 +

j—1
. 4(2n Iy . ) )
+(VAOY iy - — Y @ B )+ b LD ),
R — : j
J-1

where a, 171 € @ are constant and

1 R odr
Ity = sin(- — [ — } i
2 20(2n - D ) AT

'R /"’ dr

: ) for R <0, and
fir)

2n(2n — 1) .
)R

sinh(— —— )
20 20(2n — 1) ] )

R odr
AR ) for R > 0. .
20 (2 1) )

il

COROLLARY 5.3. Let (M7 g). n =2, be an Einstein manifold with scalar cur-

vature R < Oand let ' ... ., y! €S be a basis of (Ker Y V' Suppose
that there is a point x, € M>™ for which A C Y o) Ee (S* e,
as well as Dy ’I (xU | I l)ybjﬁ (x(]) € (S ), are linearlv dependent.

Choose a number k € N with
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“ odr 2n(2n — 1)

— 2% |/ — x

A7) - R

for a function f : R — (0, o).
Then there is a twistor spinor on the warped product (M*" x IR, f(t)2g @ dt*)
which vanishes at k points.

Proof: By the assumptions there exist non-trivial linear combinations
+ _ - + _
) b/ (x,)=0and) gDy ) =0.
i j
Now consider the twistor spinor on M** x R defined by
Vix, 1) = V1) Z {ah, (6 + by (D} Y7 (x) +
I

42n -1 . . )
+ (VA -y ) wah (1) + bR, O DY),
)

Let (M27+] , g), n 2 1, be an Einstein manifold with scalar curvature R # 0.
Denote by S the spinor bundle of MY Let Voo Y, € I'(S) be a basis

of Ker 9 . Since M*" * ! is an Einstein manifold, we have

D)=) D, ¥y
k

Using
2n+1
Vi = 8n Rdjf’
we obtain
(2n + DR
; Dy Dy = = 3

Identifying M?"*! x {1} = M?"* 1 for t € R, we choose the spin structure
so that

S|M2,1+1X{[}ES€BS, t<lR,
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for the spinor bundle S of (A" x R, g+ (/' dn)7). where the normal
et vector tield £ 09 acts on S 5 S by 1301 (¢, wy) =1l LY gy oy ) (et
{2])

Now let v € T'(S) be a twistor spinor on M R, g E(f Ld)? ). Because
of v

. . A ]
TRUEN R TS ). where g, and ¢, are twistor spinors on (H="" Loy

v is described by
v
vl t) = A (.»l/,(f) w](A\‘). Bj(r) Ll//.(.\‘))
7ol
with functions .1{,, B/. IR - (.

LEMMA 54, The functions Aj, Bj are given by

‘ i(— D" .
A= ——Y BD,
o+ O 5 !
) -1 .
B = ———— ) A,D,.

T Y

Proof: We have

. 7S .\ BvA) i . IS
e, Ve[_\b—L(Ajci VSy. Be Vi)
7

and
0 S , 0 g

- gl .

f; 'Vf(a/az)w_f 31 v(a/ar)w‘

_ 1 N {

=i 1Y f \_ B, ¥, A ¥,

j
where e ... .. €,,. isalocal orthonormal frame of M*"* 1 From Y, € Ker %
we deduce
s : - ‘
b[ . veil}/ = o+ 1 ]L]‘ (‘4}'Djk wkv — B]D]A ll/l\)

Applying
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S 2 S

we obtain the assertion. =
Differentiating the equations of Lemma 5.4, we see

. R !

BT R A
and

. R f
Altogether we have
PROPOSITION 5.5. Let (M*"*1 q), n = 1, be an Einstein manifold with scalar
curvature R #+ 0. Let x[/l e, wk € Ker @ be a basis of Ker 9. Then all twistor
spinors of the warped product

(M2n-:-l X]R’f([)ngdtz), f]R%(O, °°)5

are given by

k
Ve D =VAD Y (@ h (1) + by (1) Y,

j=1
(e, (1) + d, hy (1) ¥,(x)

where a, bj, Cpr a']. € are constants coupled by Lemma 5.4, and

1 —R bodr
el Yo [ )
2n(2n + 1) )
1 ] [T —R todr
h, (1) = cos (— ESE— — ) for R <0, and
2¥2n(2n+ 1) o bita)

h (1) = h - l/

() Sin 2 2!1(2n+1)f f(T)

h (t)—cosh( |/-———- ) for R > 0.
2n(2n + 1) D)
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