The twistor equation on Riemannian manifolds

KATHARINA HABERMANN

Sektion Mathematik
Humboldt-Universität zu Berlin
PSF 1297 - Berlin 1086-Germany

Abstract

It is shown that a twistor spinor on a Riemannian manifold defines a conformal deformation to an Einstein manifold. Twistor spinors on 4-manifolds are considered. A characterisation of the hyperbolic space is given. Moreover the solutions of the twistor equation on warped products $M^{n} \times \mathbb{R}$, where M^{n} is an Einstein manifold, are described.

We study n-dimensional Riemannian spin manifolds (M^{n}, g), $n \geqslant 3$, admitting non-trivial twistor spinors. A twistor spinor is a spinor field $\psi \in \Gamma(S)$ satisfying the differential equation

$$
\nabla_{X}^{S} \psi+\frac{1}{n} X \cdot D \psi=0
$$

for all vector fields X.
The present paper is related to investigations by Th. Friedrich ([3]) and A. Lichnerowicz ([7, 8]).

In the first section we introduce some notations and give a short summary of previous results.

In Section 2 we show that a Riemannian spin manifold, which admits a solution ψ of the twistor equation satisfying $C_{\psi}^{2}+Q_{\psi}>0$, is conformally equivalent to an Einstein manifold with positive scalar curvature, where any twistor

1980 MSC: 32 L 2553 C 20
Key words: Twistors, Riemannian Manifolds.
spinor is conformally equivalent to the sum of two real Killing spinors. On the other hand, for a Riemannian spin manifold M^{n} with a twistor spinor ψ satisfying $C_{\psi}=Q_{\dot{\psi}}=0$ we obtain that $M^{n} \backslash N_{\dot{\psi}}$ is conformally equivalent to a Ricci-flat
 constants depending on ψ and N_{ψ} denotes the zero set of ψ. We note that the result for the second case can also be deduced from Proposition 6 in [3]. Similar results can be found in papers of A. Lichnerowicz concerning twistor spinors (see 19.101).

In Section 3 we study twistor spinors on 4 -manifolds and give informations concerning the dimension of the kernel of the twistor operator \mathscr{D} on connected and simply connected Riemannian 4-manifolds.

In Section 4 we prove

PROPOSITION. Let $\left(M^{n} \quad g\right)$. $n \geqslant 3$, be a complete connected spin manifold. Furthermore. let $\left(M^{n}, g\right)$ be an Einstein manifold with non-positive scalar curvature $R \leqslant 0$. Suppose that $\psi \not \equiv 0$ is a non-parallel twistor spinor on M^{n} such that the function $f: M^{n} \rightarrow[0, \infty)$ defined by $f(x)=(\psi(x), \psi(x)), x \in M^{n}$, attains a minimum.

Then
(i) If $R<0$, then $\left(M^{n}, g\right)$ is isometric to the hyperbolic space with sectional curvature $R /(n(n-1))$.
(ii) If $R=0$, then $\left(M^{n}, g\right)$ is isometric to the space $\mathbb{R}^{\prime \prime}$ with the standard metric.

In the last section we describe the solutions of the twistor equation on the warped product $\left(M \times \mathbb{R}, f^{2}(t) g \oplus d t^{2}\right)$ for an Einstein manifold (M, g) and a function $f: \mathbb{R} \rightarrow(0, \infty)$.

Furthermore, we give examples of warped products admitting twistor spinors with an arbitrary number of zeros.

The author thanks Th. Friedrich for introducing to the subject and helpful comments.

1. NOTATIONS AND PREVIOUS RESULTS

Let $\left(M^{n}, g\right)$ be a n-dimensional Riemannian spin manifold, $n \geqslant 3$, and let S be the spinor bundle of (M^{n}, g) equipped with the standard hermitian inner product \langle,$\rangle . Denote by \nabla^{S}$ the covariant derivative on the spinor bundle induced by the Levi-Civita connection ∇ on M^{n}.

A twistor spinor on $\left(M^{n}, g\right)$ is a spinor field $\psi \in \Gamma(S)$ solving the differential equation

$$
\nabla_{X}^{S} \psi+\frac{1}{\mathrm{n}} X \cdot D \psi=0
$$

for all vector fields $X \in \Gamma\left(T M^{n}\right)$, where D denotes the Dirac operator and $X \cdot \varphi$ expresses the Clifford multiplication of the vector field X by the spinor field φ. It is well-known that a spinor field $\psi \in \Gamma\{S)$ is a twistor spinor if and only if the expression $X \cdot \nabla_{X}^{S} \psi$ does not depend on the vector field X, where $|X| \equiv 1$. A spinor field $\psi \in \Gamma(S)$ satisfying the differential equation

$$
\nabla_{X}^{S} \psi=\lambda X \cdot \psi
$$

for all $X \in \Gamma\left(T M^{n}\right)$, where $\lambda \in \mathbb{C}$, is called Killing spinor. Any Killing spinor is a twistor spinor.

The twistor equation characterizes the kernel $\operatorname{Ker} \mathscr{D}$ of the twistor operator \mathscr{D}. \mathscr{D} is a conformally invariant operator, i.e. if $\bar{g}=\lambda g$ is a conformal change of the metric and $-: S \rightarrow \bar{S}$ denotes the natural isomorphism of the spin bundles then $\psi \in \operatorname{Ker} \mathscr{D}$ if and only if $\lambda^{1 / 4} \bar{\psi} \in \operatorname{Ker} \overline{\mathscr{D}}$. In addition to the conformal invariance of the operator \mathscr{D} the existence of non-trivial twistor spinors forces properties of the conformal structure of the manifold. If we consider the Weyl tensor W of the Riemannian manifold as a 2 -form with values in the bundle $\operatorname{End}(S)$, then we obtain $W \psi=0$ for any twistor spinor ψ.

On the space Ker \mathscr{D} of all twistor spinors the expression $C_{\psi}=\operatorname{Re}\langle D \psi, \psi\rangle$ is an invariant of order two and

$$
Q_{\psi}=|\psi|^{2}|D \psi|^{2}-C_{\psi}^{2}-\sum_{j=1}^{n}\left(\operatorname{Re}\left\langle D \psi, e_{j} \cdot \psi\right\rangle\right)^{2} \geqslant 0,
$$

where e_{1}, \ldots, e_{n} is an orthonormal frame on M^{n}, is an invariant of order four. In our paper we will essentially use this fact to study twistor spinors.

Further, if $\psi \in \operatorname{Ker} \mathscr{D}$ then

$$
\begin{equation*}
D^{2} \psi=\frac{R n}{4(n-1)} \psi \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{X}^{S}(D \psi)=\frac{n}{2} L(X) \cdot \psi, \quad X \in \Gamma\left(T M^{n}\right) \tag{1.2}
\end{equation*}
$$

where L denotes the (1,1)-tensor defined by

$$
L(X)=\frac{1}{n-2}\left(\frac{R}{2(n-1)} X-\operatorname{Ric}(X)\right), \quad X \in T M^{n} .
$$

In the case that the manifold ($M^{n}, ~ g$) is an Einstein manifold we have some more informations. It is easy to prove that if ($\left.M^{n}, g\right)$ is an Einstein manifold. then $D(\operatorname{Ker} \mathscr{D}) \subseteq \operatorname{Ker} \mathscr{D}$.

Moreover, the (1,1)-tensor L is given by $L=R /(2 n(n \cdots 1))$ id. Finally we remark that $(X \cdot \psi \cdot Y \cdot \varphi)=g(X Y)|\varphi|^{2}$ for all vector fields X and Y where (.) denotes the real part of \langle,$\rangle .$

We refer to $[3,7,8]$ for more details.

2. THE CONFORMAL DEFORMATION TO AN EINSTEIN MANIFOLD DEFINED BY A TWISTOR SPINOR

We start our consideration concerning the conformal structure of Riemannian spin manifolds, which admit a non-trivial solution of the twistor equation, with

PROPOSITION 2.1. Let (M^{n}, g) be a n-dimensional Riemannian spin manifold. $n \geqslant 3$, with a twistor spinor $\psi \cdot|\psi| \equiv 1$. Then $\left(M^{n}, g\right)$ is an Einstein manifold with non-negative scalar curvature

$$
R=\frac{4(n-1)}{n}\left(C_{u}^{2}+Q_{L}\right)
$$

Proof. We choose a local orthonormal frame $e_{1} \ldots e_{n}$ on M^{n}. Since ψ is a twistor spinor, we have

$$
\nabla_{c_{j}}^{S} \psi=-\frac{1}{n} \epsilon_{j} \cdot D \psi
$$

and

$$
\nabla_{e_{j}}^{S}(D \psi)=\frac{n}{2} L\left(e_{j}\right) \cdot \psi
$$

for $j=1 \ldots n$.
Consequently

$$
\begin{align*}
& \frac{n}{2}\left\langle L\left(e_{j}\right) \cdot \psi \cdot e_{i} \cdot \psi\right\rangle=\left\langle\nabla_{e_{j}}^{S}(D \psi), e_{i} \cdot \psi\right\rangle= \tag{2.1}\\
& =e_{i}\left(\left\langle D \psi \cdot e_{i} \cdot \psi\right\rangle\right)-\left\langle D \psi \cdot e_{i} \cdot \nabla_{e_{j}}^{S} \psi\right\rangle
\end{align*}
$$

Because of $|\psi| \equiv 1$ we have $0=X(\psi, \psi)=2\left(\nabla_{X}^{\mathbb{S}} \psi, \psi\right)=-2 / n(X \cdot D \psi, \psi)$ for $X \in \Gamma\left(T H^{n}\right)$.

Hence

$$
\begin{equation*}
\left(e_{j} \cdot D \psi, \psi\right)=0 \text { for } j=1, \ldots, n \tag{2.2}
\end{equation*}
$$

The real part of equation (2.1) yields

$$
\begin{aligned}
& \frac{n}{2} L_{i j}|\psi|^{2}=-\left(D \psi \cdot e_{i} \cdot \nabla_{e_{j}}^{S} \psi\right)= \\
& =-\left(e_{i} \cdot D \psi, \frac{1}{n} e_{j} \cdot D \psi\right)=-g_{i j} \frac{1}{n}|D \psi|^{2}
\end{aligned}
$$

i.e. $L_{i j}=-2 / n^{2} g_{i j}|D \psi|^{2}$.

Equation (2.2) implies $|\nu \psi|^{2}=\left(D^{2} \psi, \psi\right)$, from which $|D \psi|^{2}=R n /(4(n-1))$ follows.

Thus $L_{i j}=-R /(2 n(n-1)) g_{i j}$, which is equivalent to $R i c=R / n g$.
Consequently, $\left(M^{n}, g\right)$ is an Einstein manifold and, applying $|D \psi|^{2}=$ $=R n /(4(n-1)) \geqslant 0$, the scalar curvature R is non-negative. The identity $R=(4(n-1)) / n\left(C_{\psi}^{2}+Q_{\psi}\right)$ is proved in [3].

PROPOSITION 2.2. Let $\left(M^{n}, g\right)$ be a n-dimensional Riemannian spin manifold, $n \geqslant 3$. Suppose that $\left(M^{n}, g\right)$ is an Einstein manifold with non-vanishing scalar curvature $R \neq 0$. Then
(i) If $R>0$ then any twistor spinor is the sum of two real Killing spinors.
(ii) If $R<0$ then any twistor spinor is the sum of two imaginary Killing spinors.
I.c. $\operatorname{Ker} \mathscr{D}=K_{+} \oplus K_{-}$where

$$
K_{+}=\left\{\psi \in \Gamma(S): \nabla_{X}^{S} \psi=\frac{1}{2} \sqrt{\frac{R}{n(n-1)}} X \cdot \psi\right.
$$

for all vector fields X \}and

$$
K_{-}=\left\{\psi \in \Gamma(S): \nabla_{X}^{S} \psi=-\frac{1}{2} \sqrt{\frac{R}{n(n-1)}} X \cdot \psi\right.
$$

for all vector fields X.\}

Proof. Let ψ be a non-trivial twistor spinor on M^{n}. We consider

$$
\psi_{1}=\frac{1}{2} \sqrt{\frac{R n}{n-1}} \psi+D \psi
$$

and

$$
\psi_{2}=-\frac{1}{2} \sqrt{\frac{R n}{n-1}} \psi+D \psi
$$

Using formula (1.2), we see

$$
\nabla_{i}^{s} \psi_{1}=-\frac{1}{2} \sqrt{\frac{R}{n(n \cdots 1)}} x \cdot \psi_{1}
$$

and

$$
\nabla_{i}^{s} \psi_{2}=\frac{1}{2} \sqrt{\frac{R}{n(n-1)}} \cdot \lambda \cdot \psi_{2}
$$

for all vector fields X.
Hence ψ_{1} and ψ_{2} are real Killing spinors, if $R>0$ and imaginary Killing spinors, if $R<0$.

On the other hand, we have

$$
\psi=\sqrt{\frac{n}{R n}}\left(\psi_{1}-\psi_{2}\right)
$$

LEMMA 2.3. Let $\left(M^{n}, g\right)$ be a n-dimensional Riemannian spin manifold, $n \geqslant 3$, with a twistor spinor $\psi,|\psi| \equiv 1$. If $\left(M^{\prime \prime}, g\right)$ is a Ricci-flat space, i.e. an Einstein manifold with vanishing scalar curvature $R=0$, then ψ is a parallel spinor field.

Proof. As in the proof of Proposition 2.1 we have $|D \psi|^{2}=R n(4(n-1))$. Since $R=0$, this implies $D \psi \equiv 0$.

We conclude $\nabla_{X}^{S} \psi=-1 / n X \cdot D \psi=0$ for all $X \in \Gamma\left(T M^{n}\right)$.
Consequently, ψ is a parallel spinor field.

In the following we denote by λ_{ψ} the zero set of the spinor ψ.
COROLLARY 2.4. Let (M^{n}. g) be a n-dimensional Riemannian spin manifold, $n \leqslant 3$, with a non-trivial twistor spinor ψ and set $\bar{g}=1 /|\psi|^{4} \mathrm{~g}$.

Then $\left(M^{n} \backslash N_{\psi}, \bar{g}\right)$ is an Einstein manifold with non-negative scalar curvature

$$
\bar{R}=\frac{4(n \cdot 1)}{n}\left(C_{\psi}^{2}+Q_{\psi}\right)
$$

If $C^{2}+Q_{\psi}>0$, then $V_{\dot{u}}=0$ and Ker © transformas into Ker $\overline{\mathscr{C}}$. Where $\operatorname{Ker} \bar{Z}=\bar{K}_{+}+\bar{K}$. If $C_{\psi}^{2}+Q_{\psi}=0$, then $1 / \psi \mid \bar{\psi}$ is a parallel spinor field on ($\left.M^{n} \backslash V_{\cup}, \bar{g}\right)$.

Proof: The Riemannian metric $\bar{g}=1 /\| \|^{4} g$ has constant and non-negative scalar curvature

$$
\bar{R}=\frac{4(n-1)}{n}\left(C_{\psi}^{2}+Q_{\psi}\right) \quad(\text { see Theorem } 1 \text { in [3]). }
$$

Furthermore, $1 /|\psi| \bar{\psi}$ is a unit twistor spinor with respect to the metric \bar{g}. The relation $N_{\psi}=\phi$ for $C_{\psi}^{2}+Q_{\psi}>0$ is obviously. Now the assertion follows from Proposition 2.1, 2.2 and Lemma 2.3.

3. TWISTOR SPINORS ON 4-MANIFOLDS

Let (M^{4}, g) be a 4-dimensional oriented Riemannian spin manifold. Because M^{4} is even-dimensional, the spinor bundle S splits into two orthogonal subbundles $S=S^{+} \oplus S^{-}$corresponding to the irreducible components of the Spin (4)representation. Denote by $\psi=\psi^{+}+\psi^{-}$the induced decomposition of a spinor field $\psi \in \Gamma(S)$. Let W be the Weyl tensor of the Riemannian manifold M^{4}, which we will consider as a 2 -form with values in the bundle $\operatorname{End}(S)$ (see [3]). Denote by W_{+}and W_{-}the components of W corresponding to the decomposition $S=S^{+} \oplus S^{-}$.

Now suppose that $\psi=\psi^{+}+\psi^{-}$is a twistor spinor. Then ψ^{+}and ψ^{-}are twistor spinors too. Furthermore, recall that $W \psi=0$. Thus, $\psi^{-} \equiv 0$ implies $W_{-} \equiv 0$, and analogously $\psi^{+} \equiv 0$ forces $W_{+} \equiv 0$. Especially, if we have twistor spinors in $\Gamma\left(S^{+}\right)$as well as in $\Gamma\left(S^{-}\right)$, then the Riemannian manifold $\left(M^{4}, g\right)$ is locally conformally flat.

Furthermore, we know that the complex dimension of $\operatorname{Ker} \mathscr{D}$ for a connected and simply connected Riemannian spin manifold $\left(M^{4}, g\right)$ with $W \equiv 0$ is 8 . Moreover, $\operatorname{dim}_{\mathfrak{a}} \operatorname{Ker} \mathscr{D} \leqslant 8$ holds on a connected Riemannian 4-manifold (see [3]). In this section we will derive further informations concerning the dimension of Ker \mathscr{D} on connected and simply connected Riemannian 4-manifolds.

PROPOSITION 3.1. If $\left(M^{4}, g\right)$ is a 4-dimensional connected and simply connected Riemannian spin manifold, then the following conditions are equivalent;
(i) $\operatorname{dim}_{\mathbb{C}} \operatorname{Ker} \mathscr{D} \geqslant 3$
(ii) $\operatorname{dim}_{\mathbb{C}} \operatorname{Ker} \mathscr{D}=8$
(iii) $W \equiv 0$.

Proof: It is sufficient to show that $\operatorname{dim}_{\mathbb{C}} \operatorname{Ker} \mathscr{D} \geqslant 3$ implies $W \equiv 0$. Let ψ_{1}, ψ_{2}, ψ_{3} be three linearly independent twistor spinors. Without loss of generality we assume that $\psi_{1}, \psi_{2}, \psi_{3} \in \Gamma\left(S^{-}\right)$. Hence $W_{-} \equiv 0$. On the dense subset $M^{4}=$ $=M^{4} \backslash N_{\psi}$ of M^{4} we consider the metric $\bar{g}=1 /|\psi|^{4} \mathrm{~g}$. Then $\left(\bar{M}^{4}, \bar{g}\right)$ is Ricciflat and $\bar{\varphi}_{1}{ }^{2}=1 /\left|\psi_{1}\right| \bar{\psi}_{1}$ is a parallel spinor. Thus $\bar{D} \bar{\varphi}_{1} \equiv 0$, where \bar{D} denotes the Dirac operator of the Riemannian spin manifold (\bar{M}^{4}, \bar{g}). Furthermore,
$\bar{\varphi}_{2}=1 / \psi_{1} \mid \bar{\psi}_{2}$ and $\bar{\varphi}_{3}=1 /\left|\psi_{1}\right| \bar{\psi}_{3}$ are twistor spinors on \bar{M}^{4} and $\bar{\varphi}_{1}, \bar{\varphi}_{2}$ $\bar{\varphi}_{3} \in \Gamma\left(S\right.$, are linearly independent. Since $\left(\bar{M}^{4}, \bar{g}\right)$ is Ricci-flat, $\bar{D} \bar{\varphi}_{2}$ and $\bar{D} \bar{\varphi}_{3}$ are parallel spinor fields.

Suppose $\bar{D} \bar{\varphi}_{2} \equiv \bar{D} \bar{\varphi}_{3} \equiv 0$. Then $\bar{\varphi}_{1}, \bar{\varphi}_{2}, \bar{\varphi}_{3}$ are three lincarly independent parallel spinors in $\Gamma(S)$. This is a contradiction to the fact that we have at most two linearly independent parallel spinors in $\Gamma(S)$ on the connected 4 dimensional Riemannian spin manifold ($\left.\bar{M}^{4}, \bar{g}\right)$. Therefore, we can assume that $\overline{\rho_{\varphi}} \bar{\varphi}_{2} \not \equiv 0$. Because $\left(\bar{M}^{4}, \bar{g}\right)$ is an Einstein manifold $\bar{D} \bar{\varphi}_{2} \in \Gamma\left(S^{+}\right)$is a twis ir spinor too. Thus $\bar{w}_{+} \equiv 0$. By the conformal invariance of the Weyl tensor we obtain $W \equiv 0$ on a dense subset of M^{4}. Hence the Weyl tensor vanishes on M^{4}.

PROPOSITION 3.2. If $\left(M^{4}, g\right)$ is a 4-dimensional connected and simply connected Ricmannian spin manifold, then the following conditions are equivalent,
(i) $1 \leqslant \operatorname{dim}_{\mathbb{C}} \operatorname{Ker} \mathscr{D} \leqslant 2$
(ii) dim ${ }_{\mathbb{C}}$ Ker $\mathscr{D}=2$

If one of these conditions holds and $w^{\prime} \equiv 0\left(W_{+} \equiv 0\right)$, then we have $W_{+} \not \equiv 0$ ($W \neq 0$).

Proof: Let $\psi \neq 0$ be a twistor spinor on M^{4} and $W \not \equiv 0$. Without loss of generality we may assume that $\psi \in \Gamma\left(S^{-}\right)$. This implies $W^{\prime} \neq 0$ and hence $W_{+} \neq 0$. On $\bar{M}^{4}=M^{4} \backslash V_{\psi}$ we again consider the metric $\bar{g}=1 /|\psi|^{4} g$. Then $\bar{\varphi}=1 /|\psi| \quad \bar{\psi}$ is a parallel spinor and the curvature tensor of the Riemannian manifold (\bar{M}^{4}, \bar{g}) has the form (see [4])

$$
\bar{K}=\left(\begin{array}{cc}
W_{+}^{\prime} & 0 \\
0 & 0
\end{array}\right)
$$

Considering the curvature tensor $\overline{\mathscr{R}}$ as a 3 -form with values in $\operatorname{End}(\bar{S})$, the curvature tensor $\overline{\mathscr{R}}^{S}$ of the covariant derivative $\bar{\nabla}^{\bar{S}}$ on \bar{S} is given by

$$
\bar{S}^{\bar{S}} \varphi=\frac{1}{4} \bar{R} \varphi \quad \text { for } \varphi \in \Gamma(\bar{S}) .
$$

Thus we have $\bar{h}^{\bar{S}} \mid \bar{S}^{-} \equiv 0$. Hence there is a parallel spinor field $\bar{\varphi}_{1} \in \Gamma\left(\bar{S}^{\prime}\right)$ with $\left|\bar{\varphi}_{1}\right| \equiv 1$ and $\left\langle\bar{\varphi}, \bar{\varphi}_{1}\right\rangle \equiv 0$. It is easy to check than $\psi_{1} \in \Gamma\left(S^{-}\right)$, defined by

$$
\begin{array}{ll}
\psi_{1}(x)=|\psi(x)| \varphi_{1}(x) & \text { for } x \in \bar{M}^{4} \text { and } \\
\psi_{1}(x)=0 & \text { for } x \in N_{i}
\end{array}
$$

is a second twistor spinor on M^{4}.

Examples

We have $\operatorname{dim}_{\mathbb{C}} \operatorname{Ker} \mathscr{D}=8$ for conformally flat 4-dimensional Riemannian spin manifolds (e.g. the Euclidean space \mathbb{R}^{4} and the hyperbolic space H^{4}).

There are two parallel spinors in $\Gamma\left(S^{+}\right)$for $K 3$-surfaces. Hence, $\operatorname{dim}_{\mathbb{C}} K e r \mathscr{D}=$ $=2$ holds for a 4 -manifold which is conformally equivalent to a $K 3$-surface.

REMARK In addition to the Weyl tensor we have the conformally invariant Bach tensor on a 4 -dimensional oriented Riemannian manifold. A lengthy computation shows that the Bach tensor on a 4-dimensional Riemannian spin manifold with non-trivial twistor spinors vanishes identically.

4. COMPLETE CONNECTED EINSTEIN MANIFOLDS WITH NON-POSITIVE SCALAR CURVATURE ADMITTING TWISTOR SPINORS

In this section we will prove

PROPOSITION 4. Let $\left(M^{n}, g\right), n \geqslant 3$, be a complete connected spin manifold. Furthermore, let $\left(M^{n}, g\right)$ be an Einstein manifold with non-positive scalar curvature $R \leqslant 0$. Suppose that ψ is a non-parallel twistor spinor on M^{n} such that the function $f ; M^{n} \rightarrow[0, \infty)$ defined by $f(x)=(\psi(x), \psi(x)), x \in M^{n}$, attains a minimum. Then
(i) If $R<0$, then $\left(M^{n}, g\right)$ is isometric to the hyperbolic space with sectional curvature $R /(n(n-1))$.
(ii) If $R=0$, then $\left(M^{n}, g\right)$ is isometric to the space \mathbb{R}^{n} with the standard metric.

Proof; First we consider the critical points of the function f. Clearly, $x \in M^{n}$ is a critical point of f if and only if $X(f)=2 / n(D \psi, X \cdot \psi)=0$ for all $X \in T_{x} M^{n}$. The Hessian of f at a critical point $x \in M^{n}$ is given by

$$
\operatorname{Hess}_{x} f(X, Y)=\left[\frac{2}{n^{2}}|D \psi|^{2}-\frac{R}{2 n(n-1)}|\psi|^{2}\right] g(X, Y)
$$

$X, Y \in T_{x} M^{n}$.
It is known (see [3]) that if $\psi \neq 0$ is a twistor spinor on M^{n}, then ψ and $D \psi$ do not vanish simultaneously. Thus, $R<0$ implies that Hess $_{x} f$ is positive definite.

Now suppose that $R=0$. By means of $\nabla_{X}^{S}(D \psi)=n / 2 L(X) \cdot \psi=0$ we obtain that $D \psi$ is a parallel spinor field. Hence $|D \psi|^{2}$ is constant. Because ψ is nonparallel, $|D \psi|^{2}>0$ holds, which yields that $H_{e s s_{x}} f$ is positive definite also in
the une K. Ihis shows that each critical point of f is non-degenerate and aloal minimmot f. In the following we will see that f has at most one critical point: Amma that x_{1} and x_{2} are eritical points of f and let $d=d\left(x_{1}, x_{2}\right)$ be the serodesic distance of x_{1} and x_{2}. Now we consider a minimal geodesic $\gamma(t)$. $1=10$. W. from $\forall_{\text {, }}$ to x_{2}. For the functions $u(t)=f(\gamma(t))=|\psi(\gamma(t))|^{2}$ and at - 0 ($)(t){ }^{2}$ along the geodesic γ we deduce

$$
i=\frac{-}{n^{2}} \cdot v \quad \frac{R}{2 n(n-1)} \|
$$

(4.1)

$$
i=\frac{R n}{4(n-1)} u
$$

Since $x_{\text {, }}$ and x_{2}, are critical points of f, we have $u(0)=u(d)=0$. From the equations $(t .1)$ we derive $u=-R /(n(n) 1) u+A$, where $A \neq 0$ is a real constant. In the case $R<0$ the conditions $\dot{u}(0)=\dot{u}(d)=0$ force $d=0$, i.e. $x_{1}=x_{2}$.

For $\bar{R}=0$ we derive $v \equiv v(0)$ and $u(t)=v(0) / n^{2} t^{2}+B t+C$.
The condition $\dot{u}(0)=0$ yields $B=0$. Since ψ is a non-parallel spinor field. we have $v(0) \neq 0$. Thus, from $\dot{t}(d)=0$ we obtain $d=0$. Hence $x_{1}=x_{2}$.

By the assumption f attains its minimum.
Let $x_{0} \in M^{n}$ be the unique critical point of f. For $x \in M^{\prime \prime}$ denote by $\gamma(t)$, $\left.t \in \mid 0,4 x_{0}, x\right) \mid$ a minimal geodesic from x_{0} to x. Integrating the equations 1+.1) along γ one obtains

$$
\begin{aligned}
& f(x)=\left[f\left(x_{0}\right) \cdots \frac{4(n 1)}{R n}\left|D \psi\left(x_{0}\right)\right|^{2}\right] \sinh ^{2} \\
& \left(\left.\frac{1}{2} \sqrt{\left.\frac{R}{n(n} 1\right)} d\left(x_{0}, x\right) \right\rvert\,+f\left(x_{0}\right)\right. \\
& |D \psi(x)|^{2}=\left[\left|D \psi\left(x_{0}\right)\right|^{2} \frac{R n}{4(n-1)} f\left(x_{0}\right)\right] \cosh ^{2} \\
& \left(\left.\frac{1}{2} \sqrt{\left.\frac{R}{n(n} \frac{R}{1}\right)} d\left(x_{0}, x\right) \right\rvert\,+\frac{R n}{4(n \cdots 1)} f\left(x_{n}\right)\right.
\end{aligned}
$$

for $R<0$. and

$$
\begin{aligned}
& f(x)=\frac{\left|\underline{D\left(x_{0}\right)}\right|^{2}}{n^{2}} d\left(x_{0}, x^{2}+f\left(x_{0}\right) .\right. \\
& |D \psi(x)|^{2} \equiv\left|D \psi\left(x_{0}\right)\right|^{2}>0 . \text { for } R=0 .
\end{aligned}
$$

Therefore, the exponential map $\exp _{x_{0}}: T_{x_{0}} M^{n} \cong \mathbb{R}^{n} \rightarrow M^{n}$ is a diffeomorphism and the geodesic spheres $S^{n-1}\left(x_{0}, r\right)$ around x_{0} with radius $r>0$ are the level surfaces of f, which are $(n-1)$-dimensional submanifolds of M^{n}.

Now we are going to calculate the pull back $\hat{g}=\exp _{x_{0}}^{*}(g)$ of the metric g. We denote by ξ the vector field defined by

$$
\xi(x)=\frac{\operatorname{grad} f(x)}{\|\operatorname{grad} f(x)\|}, x \neq x_{0} .
$$

We compute

$$
\nabla_{X}(\operatorname{grad} u)=\left[\frac{2}{n^{2}} v-\frac{R}{2 n(n-1)} u\right] X
$$

for any vector field X and conclude

$$
\nabla_{X} \xi=\frac{\left[\frac{2}{n^{2}} v-\frac{R}{2 n(n-1)} u\right.}{\|\operatorname{grad} u\|}\{X-g(X, \xi) \xi\}
$$

This implies

$$
\begin{equation*}
\nabla_{\xi} \xi=0 \tag{4.2}
\end{equation*}
$$

Recalling that

$$
C_{\psi}^{2}+Q_{\psi}=|\psi|^{2}|D \psi|^{2}-\sum_{j=1}^{n}\left(D \psi, e_{j} \cdot \psi\right)^{2}
$$

is a constant and using that x_{0} is a critical point of f, one obtains $C_{\psi}^{2}+Q_{\psi}=$ $=u\left(x_{0}\right) v\left(x_{0}\right)$.

Since

$$
\|\operatorname{grad} u\|^{2}=\frac{4}{n^{2}}\left(u v-C_{\psi}^{2}-Q_{\psi}\right)
$$

we arrive at

$$
\|\operatorname{grad} u\|^{2}=\frac{4}{n^{2}}\left(u v-u\left(x_{0}\right) v\left(x_{0}\right)\right)
$$

For $R<0$ a simple calculation shows

$$
\frac{2}{n^{2}} v(x)-\frac{R}{2 n(n-1)} u(x)=
$$

$$
=\left[\frac{2}{n^{2}} v\left(x_{0}\right)-\frac{R}{2 n(n-1)} u\left(x_{0}\right)\right] \cosh \left(\sqrt{\frac{R}{n(n-1)}} d\left(x_{0}, x\right)\right) ;
$$

consequently,
(4.3)

$$
\nabla_{x} \xi=\sqrt{\frac{R}{n(n-1)}} \operatorname{coth}\left(\sqrt{\left.\frac{R}{n(n} 1\right)} d\left(x_{0}, x\right)\right) x
$$

holds for all vectors $X \in T_{x} M^{n}, x \neq x_{0}$, orthogonal to $\xi(x)$. In the case $R=U$ a similar calculation shows

$$
\begin{equation*}
\nabla_{X} \xi(x)=\frac{1}{d\left(x_{0}, x\right)} X \tag{4.4}
\end{equation*}
$$

for all vectors $X \in T_{x} M^{n}, x \neq x_{0}$, orthogonal to $\xi(x)$.
We denote by $\gamma_{t}(x)$ the integral curves of ξ satisfying the condition $\gamma_{0}(x)=\boldsymbol{x}$
Let $\Psi: S^{n}{ }^{1}\left(x_{0}, 1\right) \times(0, \infty) \rightarrow M^{n} \backslash x_{0}$ be the diffeomorphism given by $\Psi(x, t)=\gamma_{t, 1}(x)$. Using the formula (4.2), (4.3) and (4.4), we compute

$$
\Psi^{*}(g)=\left.\frac{\sinh ^{2}\left(\sqrt{\frac{R}{n(n \cdots 1)}} t\right)}{\sinh ^{2}\left(\sqrt{\left.\frac{-R}{n(n} 1\right)}\right)} g\right|_{S^{n}} \quad 1(x, 1)^{+} d t^{2}, \text { if } R<0,
$$

and

$$
\Psi^{*}(g)=\left.t^{2} g\right|_{S^{n-1}} 1_{\left(x_{0}, 1\right)} \oplus d t^{2}, \text { if } R=0
$$

Applying the same arguments as in the proof of Theorem 2 in [2], one obtains that $\left(M^{n}, g\right)$ is isometric to $\left(\mathbb{R}^{k}, \hat{g}\right)$, where \hat{g} is given in polar coordinates by

$$
\hat{g}=-\frac{n(n-1)}{R} \sinh ^{2}\left(\sqrt{\frac{-R}{n(n-1)}} t\right) g_{S^{n-1}} d t^{2}
$$

if $R<0$, and

$$
\hat{g}=t^{2} g_{S^{n}} \quad 1 \oplus d t^{2}, \text { if } R=0
$$

Here $g_{S^{n-1}}$ denotes the standard metric of the unite sphere $S^{n \cdots 1}$.

5. THE TWISTOR EQUATION ON WARPED PRODUCTS

Let $\left(M^{2 n}, g\right), n \geqslant 2$, be an Einstein manifold with scalar curvature $R \neq 0$.

Then the spinor bundle S of $M^{2 n}$ splits into two orthogonal subbundles $S=S^{+} \oplus S$. Denote by $\operatorname{Ker} \mathscr{D}=(\operatorname{Ker} \mathscr{D})^{+} \oplus(\operatorname{Ker} \mathscr{D})^{-}$the induced decomposition of $\operatorname{Ker} \mathscr{D}$. Since $\left(M^{2 n}, g\right)$ is an Einstein manifold, we have

$$
D\left((\operatorname{Ker} \mathscr{D})^{ \pm}\right)=(\operatorname{Ker} \mathscr{D})^{\mp}
$$

Let $\left\{\psi_{j}^{+}\right\}$be a basis of $(\operatorname{Ker} \mathscr{D})^{+}$and $\left\{\psi_{i}^{-}\right\}$a basis of $(\operatorname{Ker} \mathscr{D})^{-}$. Thus

$$
D\left(\psi_{j}^{+}\right)=\sum_{k} D_{j k}^{+} \psi_{k}^{-} \text {and } D\left(\psi_{j}\right)=\sum_{e} D_{j e}^{-} \psi_{e}^{+} .
$$

Now fix a function $f: \mathbb{R}^{1} \rightarrow(0, \infty)$ and consider the Riemannian manifold $\left(M^{2 n} \times \mathbb{R} f(t)^{2} g \oplus d t^{2}\right.$). The metric $f(t)^{2} g \oplus d t^{2}$ is conformally equivalent to the metric $g \oplus\left(f^{-1} d t\right)^{2}$. We recall that ψ is a twistor spinor on $M^{2 n} \times \mathbb{R}$ with respect to the metric $g \oplus\left(f^{-1} d t\right)^{2}$ if and only if $\sqrt{f} \psi$ is a twistor spinor with respect to the metric $f(t)^{2} g \oplus d t^{2}$.

We first consider the metric $g \oplus\left(f^{-1} d t\right)^{2}$ on $M^{2 n} \times \mathbb{R}$.
Then $f(\partial / \partial t)$ is a normal unit vector field on $M^{2 n}$.
Identifying $M^{2 n} \times\{t\} \cong M^{2 n}$ for $t \in \mathbb{R}$, we choose the spin structure of $M^{2 n} \times \mathbb{R}$ so that

$$
\left.S\right|_{M^{2 n} \times\{t\}} \cong S=S^{+} \oplus S^{-}, t \in \mathbb{R},
$$

for the spinor bundle S of $M^{2 n} \times \mathbb{R}$, where $f(\partial / \partial t)$ acts on S by

$$
\left.f \frac{\partial}{\partial t}\right|_{S^{+}}=i(-1)^{n} \text { and }\left.f \frac{\partial}{\partial t}\right|_{S^{-}}=-i(-1)^{n}
$$

(see [2]).
Let $\psi \in \Gamma(S)$ be a twistor spinor on $\left(M^{2 n} \times \mathbb{R}, g \oplus\left(f^{-1} d t\right)^{2}\right)$. One easily shows that $\left.\psi\right|_{M^{2 n} \times\{t\}}$ is a twistor spinor on $\left(M^{2 n}, g\right)$ for arbitrary $t \in \mathbb{R}$. Hence, ψ has the form

$$
\psi(x, t)=\sum_{j} C_{j}^{+}(t) \psi_{j}(x)+\sum_{k} C_{k}^{-}(t) \psi_{k}^{-}(x)
$$

with functions $C_{j}^{+}, C_{k}^{-}: \mathbb{R} \rightarrow \mathbb{C}$.
LEMMA 5.1. The functions $C_{\dot{j}}^{+}, C_{k}$ are given by

$$
\dot{C}_{j}^{+}=\frac{-i(-1)^{n}}{2 n f} \sum_{k} C_{k}^{-} D_{k j}^{-}
$$

$$
\dot{C}_{k}=\frac{i(-1)^{n}}{2 m j^{\prime}} \sum_{j} C_{j}^{+} D_{j k}^{+} .
$$

Proof: From

$$
\psi=\sum_{j} C_{j}^{+} \psi_{j}^{+}+\sum_{k} C_{k} \psi_{k}
$$

we obtain

$$
c_{i} \cdot \nabla_{e_{i}}^{S} \psi=\sum_{i} C_{j}^{+} e_{i} \cdot \nabla_{e_{i}}^{S} \psi_{j}^{+}+\sum_{k} C_{k}^{-} e_{i} \cdot \nabla_{e_{i}}^{S} \psi_{k}
$$

and

$$
\begin{aligned}
& f \frac{\partial}{\partial t} \cdot \nabla_{f(\partial / \partial t)}^{S} \psi=f^{2} \frac{\partial}{\partial t} \nabla_{(\partial / \partial t)}^{S} \psi= \\
& \left.=i(-1)^{n} f\right)_{j}^{J} \dot{C}_{j}^{+} \psi_{j}^{+}-\sum_{k} \dot{C}_{k}^{-} \psi_{k}^{-}
\end{aligned}
$$

where $e_{1}, \ldots, e_{2 n}$ is a local orthonormal frame of $M^{2 n}$. Since ψ_{j}^{+}and ψ_{k} are twistor spinors on $M^{2 n}$, we have

$$
e_{i} \cdot \nabla_{e_{i}}^{S} \psi_{j}^{+}=\frac{1}{2 n} D\left(\psi_{j}^{+}\right)=\frac{1}{2 n} \sum_{k} D_{j k}^{+} \psi_{k}
$$

and

$$
e_{i} \cdot \nabla_{e_{i}}^{S} \psi_{k}=\frac{1}{2 n} D\left(\psi_{\bar{k}}\right)=\frac{1}{2 n} \sum_{j} D_{k j}^{-} \psi_{j} .
$$

Hence we arrive at

$$
\left.\left.e_{i} \cdot \nabla_{\boldsymbol{e}_{i}}^{S} \psi=\frac{1}{2 n}\right\} \sum_{k j} C_{j}^{+} D_{j k}^{+} \psi_{k}^{-}+\sum_{k, j}^{-} C_{k}^{--} D_{k j} \psi_{j}^{-}\right\}
$$

The twistor equation for ψ implies

$$
c_{i} \cdot \nabla_{e_{i}}^{S} \psi=f^{2} \frac{\partial}{\overline{\partial t}} \nabla_{(\partial / \partial t)}^{S} \psi, \quad i=1 \ldots . \ldots 2 n
$$

Now the desired differential equations follow.

Now assume that $\psi_{j}^{-}=D\left(\psi_{j}^{+}\right)$. Then $D_{j k}^{+}=\delta_{j k}$. Futher, by means of

$$
D^{2} \psi_{j}^{+}=\frac{R n}{2(2 n-1)} \psi_{j}^{+}
$$

we have

$$
D_{k j}^{-}=\frac{R n}{2(2 n-1)} \delta_{k j}
$$

Consequently, the differential equations of Lemma 5.1 become

$$
\begin{align*}
& \dot{C}_{j}^{+}=\frac{-i(-1)^{n} R}{4(2 n-1) f} C_{j}^{-} \tag{5.1}\\
& \dot{C}_{j}^{-}=\frac{i(-1)^{n}}{2 n f} C_{j}^{+}
\end{align*}
$$

Differentiating equation (5.1) and using equation (5.2), we obtain

$$
\ddot{C}_{j}^{+}=\frac{R}{8 n(2 n-1) f^{2}} \quad C_{j}^{+}-\frac{\dot{f}}{f} \dot{C}_{j}^{+}
$$

We remark that the differential equation

$$
\ddot{h}=c \frac{h}{f^{2}} \cdots \frac{\dot{f}}{f} \dot{h}
$$

for a function h on \mathbb{R} with $c \in \mathbb{R}, c \neq 0$, and $f: \mathbb{R} \rightarrow(0, \infty)$ has the fundamental solutions

$$
\begin{aligned}
& h_{1}(t)=\sin \left(\sqrt{-c} \int_{0}^{t} \frac{d \tau}{f(\tau)}\right) \\
& h_{2}(t)=\cos \left(\sqrt{-c} \int_{0}^{t} \frac{d \tau}{f(\tau)}\right) \text { for } c<0, \\
& \text { and } \\
& h_{1}(t)=\sinh \left(\sqrt{c} \int_{0}^{t} \frac{d \tau}{f(\tau)}\right)
\end{aligned}
$$

$$
h_{2}(t)=\cosh \left(\sqrt{c} \int_{0}^{t} \frac{d \tau}{f(\tau)}\right) \quad \text { for } c>0
$$

Altogether we proved

PROPOSITION 5.2. Let $\left(M^{2}, g\right), n \geqslant 2$, be an Linstein manifold with scalar curvature $R \neq 0$ Let $\psi_{1}^{+}, \ldots, \psi_{m}^{+} \in(\text { Ker } C D)^{+}$be a basis of (Ker $\left.\mathscr{D}^{\prime}\right)^{+}$. Then all twistor spinors of the Ricmannian manifold $\left(M^{2 n} \times \mathbb{R}, f(t)^{2} g\left(d t^{2}\right)\right.$ with $f: \mathbb{R} \rightarrow(0, \infty)$, are given by

$$
\begin{aligned}
& \psi(x, t)=\sqrt{f(t)} \sum_{j=1}^{m}\left\{a_{j} h_{1}(t)+b_{j} h_{2}(t)_{j}^{\prime} \psi_{j}(x)+\right. \\
& +(\sqrt{f}(t))^{3} \cdot i(\cdots 1)^{n} \frac{4(2 n}{R} \sum_{i=1}^{m} a_{j} h_{1}(t)+b_{j} h_{2}(t) ; D \psi_{j}(x) .
\end{aligned}
$$

where $a_{j}, b_{i} \in \mathbb{T}$ are constant and

$$
\begin{aligned}
& h_{1}(t)=\sin \left(\frac{1}{2} \sqrt{\frac{R}{2 n(2 n-1)}} \int_{0}^{t} \frac{d \tau}{f(\tau)}\right) \\
& h_{2}(t)=\cos \left(\frac{1}{2} \sqrt{\frac{R R}{2 n(2 n-1)}} \int_{0}^{t} \frac{d \tau}{f(\tau)}\right) \quad \text { for } R<0, \text { and } \\
& h_{1}(t)=\sinh \left(\frac{1}{2} \sqrt{\frac{R}{2 n(2 n-1)}} \int_{0}^{t} \frac{d \tau}{f(\tau)}\right) \\
& h_{2}(t)=\cosh \left(\frac{1}{2} \sqrt{\frac{R}{2 n}(2 n} \int_{0}^{t} \frac{d \tau}{f(\tau)}\right) \text { for } R>0 .
\end{aligned}
$$

COROLLARY 5.3. Let $\left(M^{2 n}, g\right), n \geqslant 2$, be an Einstein manifold with scalar curvature $R<0$ and let $\psi_{1}^{+} \ldots . \psi_{m}^{+} \in \Gamma\left(S^{+}\right)$be a basis of (Ker $\left.\mathscr{D}\right)^{+}$. Suppose that there is a point $x_{0} \in M^{2 n}$ for which $\psi_{1}^{+}\left(x_{0}\right) \ldots \psi_{m}^{+}\left(x_{0}\right) \in\left(S^{+}\right)_{x_{0}}$ as well as $D \psi_{i}^{i}\left(\mathrm{x}_{0}\right) \ldots, D \psi_{m_{i}}^{+}\left(x_{0}\right) \in(S)_{x_{0}}$ are linearly dependent.
choose a number $k \in \mathbb{N}$ with

$$
\int_{0}^{\infty} \frac{d \tau}{f(\tau)} \geqslant 2 k \sqrt{\frac{2 n(2 n-1)}{-R}} \pi
$$

for a function $f: \mathbb{R} \rightarrow(0, \infty)$.
Then there is a twistor spinor on the warped product $\left(M^{2 n} \times \mathbb{R}, f(t)^{2} g \oplus d t^{2}\right)$ which vanishes at k points.

Proof: By the assumptions there exist non-trivial linear combinations

$$
\sum_{j} b_{j} \psi_{j}^{+}\left(x_{0}\right)=0 \text { and } \sum_{j} a_{j} D \psi_{j}^{+}\left(x_{0}\right)=0
$$

Now consider the twistor spinor on $M^{2 n} \times \mathbb{R}$ defined by

$$
\begin{aligned}
& \psi(x, t)=\sqrt{f(t)} \sum_{j}\left\{a_{j} h_{1}(t)+b_{j} h_{2}(t)\right\} \psi_{j}^{+}(x)+ \\
& +(\sqrt{f}(t))^{3} i(-1)^{n} \frac{4(2 n-1)}{R} \sum_{j}\left\{a_{j} \dot{h}_{1}(t)+b_{j} \dot{h}_{2}(t)\right\} D \psi_{j}^{+}(x)
\end{aligned}
$$

Let $\left(M^{2 n+1}, g\right), n \geqslant 1$, be an Einstein manifold with scalar curvature $R \neq 0$. Denote by S the spinor bundle of $M^{2 n+1}$. Let $\psi_{1}, \ldots, \psi_{k} \in \Gamma(S)$ be a basis of $\operatorname{ker} \mathscr{D}$. Since $M^{2 n+1}$ is an Einstein manifold, we have

$$
D\left(\psi_{j}\right)=\sum_{k} D_{j k} \psi_{k} .
$$

Using

$$
D^{2} \psi_{j}=\frac{2 n+1}{8 n} R \psi_{j}
$$

we obtain

$$
\sum_{k} D_{i k} D_{k j}=\frac{(2 n+1) R}{8 n} \delta_{i j}
$$

Identifying $M^{2 n+1} \times\{t\} \cong M^{2 n+1}$, for $t \in \mathbb{R}$, we choose the spin structure so that

$$
\left.S\right|_{M^{2 n+1} \times\{t\}} \cong S \oplus S, \quad t \in \mathbb{R}
$$

for the simor bundle S of $\left(11^{2 n+1} \times \mathbb{R}, \underline{y}+\left(f^{1} d t\right)^{2}\right)$, where the normal unit wector tield f atats on $S: S$ by $f \partial / \partial t\left(\varphi_{1} \varphi_{2}\right)=i(\quad 1)^{2}\left(\varphi_{2}, \varphi_{1}\right)(c f$. 120.

Now let $\psi \in \Gamma(S)$ be a twistor spinor on $\left(M^{2 n+1} \times \mathbb{R}, \underline{q}\left(f^{1} d t\right)^{2}\right)$. Because of $\dot{\psi}: y=n!1 \times\{ \}_{1}=\left(\varphi_{1}, \varphi_{2}\right)$, where φ_{1} and φ_{2} are twistor spinors on $\left(M^{2 n+1}, \underline{\varphi}\right)$, ψ is deseribed by

$$
\psi(x, t)=\sum_{j=1}^{h}\left(\mathcal{H}_{j}(t) \psi_{j}(x), B_{j}(t) \psi_{j}(x)\right)
$$

with functions $A_{j}, B_{j}: \mathbb{R} \rightarrow \mathbb{C}$.

1. MMM : 5.4. The functions A_{j}, B_{j} are given by

$$
\begin{aligned}
& \dot{q}_{j}=\frac{i(-1)^{n}}{(2 n+1) f} \sum_{k} B_{k} D_{k j} \\
& \dot{B}_{j}=\frac{i(-1)^{n}}{(2 n+1) f} \sum_{k} A_{k} D_{k j}
\end{aligned}
$$

Proof: We have

$$
e_{i} \cdot \nabla_{e_{i}}^{S} \psi=\sum_{i}\left(A_{j} e_{i} \cdot \nabla_{e_{i}}^{S} \psi_{j}, \cdots B_{j} e_{i} \cdot \nabla_{e_{i}}^{S} \psi_{i}\right)
$$

and

$$
\begin{aligned}
& f \frac{\partial}{\partial t} \cdot \nabla_{f(\partial / \partial t)}^{S} \psi=f^{2} \frac{\partial}{\partial t} \cdot \nabla_{(\partial / \partial t)}^{S} \psi= \\
& =i(-1)^{n} f \sum_{j}\left(\dot{B}_{j} \psi_{j}, \dot{A}_{j} \psi_{j}\right)
\end{aligned}
$$

where $e_{1}, \ldots \mathcal{e}_{2 n+1}$ is a local orthonormal frame of $M^{2 n+1}$. From $\psi_{j} \in \operatorname{Ker} \mathscr{C}$ we deduce

$$
c_{i} \cdot \nabla_{e_{i}}^{S} \psi=\frac{1}{2 n+1} \sum_{j, k}\left(A_{j} D_{j k} \psi_{k},-B_{j} D_{j k} \psi_{k}\right)
$$

$$
e_{i} \cdot \nabla_{e_{i}}^{S} \psi=f^{2} \frac{\partial}{\partial t} \cdot \nabla_{(\partial / \partial t)}^{S} \psi
$$

we obtain the assertion.
Differentiating the equations of Lemma 5.4, we see

$$
\ddot{A_{j}}=\frac{R}{8 n(2 n+1) f^{2}} A_{j}-\frac{\dot{f}}{f} \dot{A}_{j}
$$

and

$$
\ddot{B}_{j}=\frac{\underline{R}}{8 n(2 n+1) f^{2}} B_{j}-\frac{\dot{f}}{f} \dot{B}_{j} .
$$

Altogether we have

PROPOSITION 5.5. Let $\left(M^{2 n+1}, g\right), n \geqslant 1$, be an Einstein manifold with scalar curvature $R \neq 0$. Let $\psi_{1}, \ldots, \psi_{k} \in K e r \mathscr{D}$ be a basis of Ker \mathscr{D}. Then all twistor spinors of the warped product

$$
\left(M^{2 n * 1} \times \mathbb{R}, f(t)^{2} g \oplus d t^{2}\right), \quad f: \mathbb{R} \rightarrow(0, \infty)
$$

are given by

$$
\begin{aligned}
& \psi(x, t)=\sqrt{f(t)} \sum_{j=1}^{k}\left(\left(a_{j} h_{1}(t)+b_{j} h_{2}(t)\right) \psi_{j}(x)\right. \\
& \left.\left(c_{j} h_{1}(t)+d_{j} h_{2}(t)\right) \psi_{j}(x)\right)
\end{aligned}
$$

where $a_{j}, b_{j}, c_{j}, d_{j} \in \mathbb{C}$ are constants coupled by Lemma 5.4, and

$$
\begin{aligned}
& h_{1}(t)=\sin \left(\frac{1}{2} \sqrt{\frac{-R}{2 n(2 n+1)}} \int_{0}^{t} \frac{d \tau}{f(\tau)}\right), \\
& h_{2}(t)=\cos \left(\frac{1}{2} \sqrt{\frac{-R}{2 n(2 n+1)}} \int_{0}^{t} \frac{d \tau}{f(\tau)}\right) \text { for } R<0, \text { and } \\
& h_{1}(t)=\sinh \left(\frac{1}{2} \sqrt{\frac{R}{2 n(2 n+1)}} \int_{0}^{t} \frac{d \tau}{f(\tau)}\right), \\
& h_{2}(t)=\cosh \left(\frac{1}{2} \sqrt{\frac{R}{2 n(2 n+1)}} \int_{0}^{t} \frac{d \tau}{f(\tau)}\right) \text { for } R>0 .
\end{aligned}
$$

RETERLNCES

 tigheitm. Tenbner Verlag Leipaig 1981.
[) B.\ソ ll. (omplefe Ricmanmian manifolds with imaginarı Killing spinors, Ann. Global Anal. Gcom, 7(1989).
13| FRIDREN Th.. On the conformal relation betucen twistors and killing spinors Preprint 200. H1 Berlin 1989.
1+] FRII DRKH Th.. Solfdidatity of Ricmamian manifolds and comhections. In: Self-dual Remannian Geometry and Instantons, Teubner-Verlag Leipzig 1981.
15| IRRIDRLCH Th.. KATH I., Einstein manifolds of dimension five with small first cigenralue wf the Dirac operator. Journal of Differential Geometry 29(1989).
|0| Hifchiv N.. Compact four-dimensional timstein manifolds. Journal of Differential (ieometry 9 (1974).
[7] LICHNROWIC7. A . Spin manifolds. Killing spinors and whersality of the Mifazi-ine quality. Lett Math Phys 13(1987)
 dead Sci. Paris Serie I 300 (1988).
[9] LichNirohicz A., On the twistor-spinors, Lett. Math. Phys. 18(1989), added in correction.
[10] Lehivirowioz. A.. Sur les zéros des spineurs-twisteurs, C.R. Acad. Sci. Paris Serie I $310(1990)$. added in correction.

Mamascript receised: Jamary 20, 1990.

